

UTILITY COMMITTEE

Meeting Notice

Governing Body: Utility Committee of Boone, Iowa

Date of Meeting: October 10, 2023

Time of Meeting: 4:30 P.M.

Place of Meeting: City Hall Council Chambers

- 1. Call Meeting to Order.
- 2. Approve Minutes from the September 12, 2023 Meeting.
- 3. Review/Discuss SEH Memo Regarding TdVib Pretreatment Application.
- 4. Discuss Total Tri-Halo Methane (THM) at the Water Treatment Plant.
- 5. Review August 2023 US Water Monthly Report.
- 6. Meter Upgrade Report.
 - a. September
- 7. Stop Box Repair/Shut Off Report.
 - a. September
- 8. Other Business.
- 9. Adjourn.

UTILITY COMMITTEE

Meeting Notice

Governing Body: Utility Committee of Boone, Iowa

Date of Meeting: September 12, 2023

Time of Meeting: 4:30 P.M.

Place of Meeting: City Hall Council Chambers

1. Call Meeting to Order.

Present: Moorman, Stines, Angstrom

Others present: Skare, Robbins, Andrews, Majors, Vote, Aaron Voss, JD Roberts, Laurie

Twitchell, Lora Olerich, Turbes

2. Approve Minutes from the August 8, 2023, Meeting.

Angstrom moved; Stines seconded to approve the minutes of the August 8, 2023, Utility Meeting. Ayes: all those in attendance. Nays: none.

3. Discuss Solution for Phase 5 I & I Penalty Charges and Compliance. – Lora Olerich.

Lora Olerich presented photographs of her downtown business property and correspondence with City officials in regard to pumping water from her building to the City street to comply with the Inflow and Infiltration Program. Olerich advised that her plumber told her there were no options other than to run her sump pump to the street because the walls and floors are thick concrete. Olerich feels this puts her business in jeopardy for lawsuits or her basement flooding. Olerich requested a written statement from the City to accept liability against any potential lawsuits or if her basement were to flood, or a variance excluding the downtown buildings from the program. Olerich also requested a refund on the non-compliance fees she has paid. Robbins advised that the City will not provide a written statement accepting liability.

Andrews stated he met with Olerich and the solution he found was to penetrate the floor, come through the wall, and dump any water into the gutter downspout; and this was not acceptable to Olerich. Andrews also suggested using heat tape in the winter.

Angstrom stated that he does not see sump pumps freezing in the winter and the heat tape would help. Once the water gets to the City street, it becomes the City's liability and for Olerich to do her due diligence to get any water away from her building and to the road.

Moorman suggested core drilling through the concrete close to the drain line and running a pipe to the street with heat tape on it. Moorman and Andrews agreed that this is not an easy fix and will take work. The Committee suggested using Kruck Plumbing or Pritchard Bros Plumbing as they both have core drills.

The Committee also advised that they would not be able to provide a variance excluding the downtown buildings from the program.

4. Discuss HSC/Stairs Conflict. – UV Project.

Laurie Twitchell, Project Manager with Fox Strand, advised that the contractor placed the hydraulic system incorrectly and not according to the approved plans; not leaving enough clearance for the metal stairs. Twichell presented two (2) options from the contractor. Option one (1) is to run the railing down the middle of the stairs. Option two (2) is to rotate the hydraulic system around.

The Committee directed Twitchell to advise the contractor that the hydraulic system should be placed where it belongs according to plans and to move the hoses as necessary.

5. Review July 2023 US Water Monthly Report.

The Committee reviewed the monthly US Water and Wastewater Operations and Maintenance Report for July 2023.

6. Meter Upgrade Report.

a. August

Andrews reported that in August staff finished sixteen (16) meter upgrades, three (3) meters were installed for new service, and thirteen (13) meters were changed out due to other reasons.

Andrews is preparing to install half of the one hundred twenty-eight new meters at the new 22^{nd} and Linn Street complex.

Andrews stated he has filled one (1) street laborer position internally and is working on filling another position.

7. Stop Box Repair/Shut Off Report.

a. August

Vote stated that in August, \$6,218.65 was collected during shut-offs; thirty four (34) accounts qualified to be on the shut off list. Six (6) delinquent bills totaling \$2,537.55 were certified August 29, 2023, and if left unpaid, nine (9) bills totaling \$4,273.50 are scheduled to be certified on September 22, 2023. Vote also reported that there are one hundred twenty-two (122) stop boxes in need of repair, fifty-three (53) of which have lead service lines.

Andrews advised the Annual Leak Survey showed no city leak issues. There was one (1) leak issue at the Park and seven (7) or eight (8) personal service leak issues.

- 8. Other Business.
- 9. Adjourn.

5:51 p.m.

MEMORANDUM

TO: City of Boone, IA

USW Utility Group

FROM: Thad Webb

Perry Gjersvik

DATE: October 3, 2023

RE: Critical Materials Recycling (TdVib) REVISED Wastewater Contribution Permit

Application

SEH No. 173872 14.00

SEH has reviewed the REVISED Wastewater Contribution Permit Application (Attachment A) submitted by Critical Materials Recycling (TdVib).

Based on our evaluation of the information provided in the application it appears that metals should be undetectable in the pilot scale discharge from the facility. However, that may or may not be the case when the facility scales up to full production, depending on what existing metal discharges are in the collection system from other users as well as from this discharge.

We would advise that the City accept the pilot scale discharge with the proposed level of treatment. After some period of data collection on the actual discharge from TdVib and at the WWTF, an updated application to scale up the flows could then be more fully vetted.

A couple suggestions for special conditions for the discharge permit are:

- A sample point capturing all discharged process flows prior to dilution with sanitary wastewater shall be provided.
- 2. A water or wastewater flowmeter measuring process flows discharged to the sewer collection system shall be provided.
- 3. Large batch discharges of process flows when the facility is scaled up to full production should be prohibited.
- 4. All costs for additional testing for metals associated with this permit at the Boone WWTF will be borne by the industry

tdw

Enclosures

City of Boone, Iowa ENVIRONMENTAL SERVICES WASTEWATER CONTRIBUTION PERMIT APPLICATION

https://www.boonegov.com/

Note to Signing Official: In accordance with Title 40 of the Code of Federal Regulations Part 403 Section 403.14, information and data provided in this permit application, which identifies the nature and frequency of discharge, shall be available to the public without restriction. Requests for confidential treatment of other information shall be governed by procedures specified in 40 CFR Part 2.

	SECTION A – GENERAL	Information	
Facility Name Critical Materials Rec	ycling		
Operator Name Daniel Bina			
Is The operator identified above the own owner and submit a copy of the contract Scott Beckwith		☑ No If no, provide the ating the operator's scope of re	
Facility Address			
Street 2121 Industrial Park Roa	d City Boone	State	A z ip 50036
Mailing Address			
Street 2121 Industrial Park Road	City Boone	State	IA Zip 50036
Designated signatory authority of th	e facility. Attach additional i	information for each authori	zed representative:
Name Daniel Bina	Title CEO		
Address 2121 Industrial Park Roa	ad City Boone	State	A z ip50036
Phone 515-310-1012	Fax		
Email Address dan.bina@cmr-us.co	om		
Designated facility contact:	CEO		
Name Daniel Bina	Title		
Phone 515-310-1012	Fax	Email dan.bina@	cmr-us.com
	SECTION B – BUSINES	SS ACTIVITY	
1. If your facility employs or will be emp (regardless of whether they generate wa activity (check all that apply)			
Industrial Categories*			
Airport Deicing	Aluminum Forming	Asbestos Manufacturing	Battery Manufacturing
Builders Paper and Board Mills	Carbon Black Manufacturing	Cement Manufacturing	Centralized Waste Treatment
Chemical Formulators and Packagers	Coil Coating	Copper Forming	Dairy Products Processing
Electrical and Electronic Components	Electroplating	Explosives Manufacturing	Feedlots
Ferro Alloy Manufacturing	Fertilizer Manufacturing	Canned & Preserved Fruits and Vegetables Processing	Glass Manufacturing
Grain Mills	Gum and Wood Chemicals Manufacturing	☐Hospitals	☐Industrial Laundries
☐Ink Formulating	✓Inorganic Chemicals Manufacturing	☐Iron & Steel Manufacturing	Landfills or Incinerators

Leather Tanning and Finis	shing	Meat Products		Meta	l Finishing	Metal Molding and Casting
☐Metal Products & Machin	ery \Box	Ineral Mining & F	Processing		errous Metals g & Metal Powders	Nonferrous Metals Manufacturing
Ore Mining and Dressing		Organic Chemicals, & Synthetic Fibers			Formulating	Paving & Roofing Materials
Petroleum Refining		harmaceutical Mar	nufacturing	Phos	phate Manufacturin	g Photographic Processing
Plastics Molding and Form	ning D	orcelain Enameling	g	Pulp, Board	Paper & Paper	Rubber Processing
Canned & Preserved Seaf Processing	ood	oaps and Detergen	ts	_	n Electric Power erating	Sugar Processing
Textile Mills	ПТ	imber Products Pro	ocessing		sportation ent Cleaning	Urban Stormwater
*Environmental Protecti processes listed above.					lards may apply	to facilities with the
Give a brief description of (attach additional sheets CMR, founded 2022, i National Laboratory. Condicate applicable Standard	if necessary) s commercia CMR recovers	lizing the acid- s rare earth ele	-free dissol ements to p	lution r	recycling techn re rare earth ox	ology developed at Ames ide.
A ₂₈₁₉	В		C			D
		Product	Volume Est	timate		
Product	Past Cale	endar Year		A	mounts Per Day	(Daily Units)
Produced		Daily Units)	Maxim		Average	Maximum
Rare earth oxide	N/A (not in pr	oduction)			3	
	(
		SECTION C				
		Water Source				Пол
	urface Water	✓Municipal V	Water (speci	ify City	(1)	Other
	Vib LLC					
Street Address on bill 21						
Water Service Account N	Number 03414	60002				
I	List average wa		`	facilitie	es may estimate u	isage)
Туре		Average Wate (gpd)	er Usage	Indic	cate Estimated or	Measured
A. Contact cooling water	•					
B. Non-contact cooling v	water					
C. Boiler feed		8				
D. Process		640		Estim	nated	
E. Sanitary						

Туре	Averag	ge Water Us (gpd)	sage		Indicate Es	timated o	r Measured	l
F. Air pollution control		,						
G. Contained in product								
H. Plant and equipment wash down								
I. Irrigation and equipment wash	igation and equipment wash							
J. Other (specify)	ther (specify)							
Total of A-J	Fotal of A-J 648							
	Section	D – Sewe	er Infor	matic	on			
FOR EXISTING BUSINESSES ONLY								
Is the building presently connected to the	☑ Y	es Sanitar	y sewer ac	ccount 1	number <u>0341</u>	<u>4</u> 60002		
public sanitary sewer system?	\square N	o Have y	ou applied	l for a s	anitary sewer	connection	n? 🗌 Yes 🔽	Z No
	FOR N	NEW BUSIN	NESSES (ONLY				
Will you be occupying an existing vacan	nt building	(such as in	an indust	trial pa	ark)?	Yes	No	
Have you applied for a building permit	if a new fa	cility will b	e constru	cted?		Yes	No	
Will you be connected to the public san							No	
List the size, descriptive location, and fl		•	ver line w	hich co	onnects to th	e City's se	ewer system	. (If
needed, attach additional information of Sewer Size Descriptive Location of Se			scharge F	Point	Δ	verage F	low (GPD)	
Descriptive Location of Se	wer com	cetton of Di	senarge r	OIII		rverage 1	iow (GI D)	
Section E	– WAST	EWATER]	DISCHA	RGE I	NFORMAT	ION		
Does (or will) this facility discharge any If yes, complete the remainder of the ap	wastewat	er other tha	n from re	estroon		sewer?	✓ Yes [No
Provide the following information on w	astewater :	flow rate (n	ew faciliti	ies mav	v estimate)			
	Monday	Tuesday	Wedneso	ī	Thursday	Friday	Saturday	Sunday
Hours/Day of discharge (e.g., 8hrs/day)	8	8	8		8	8		
Hours of Discharge (e.g., 9 am to 5 pm)	8am-4pm	8am-4pm	8am-4pr	m	8am-4pm	8am-4pn	า	_
Peak per minute 30 (GPM)	GPD	Annual da	aily averag	ge 640	GPD			
Are there batch discharges? ✓ Yes								
A. Number of batch discharges per day	per bat	tch (gallons) 2	215					
C. Time of batch discharges: Day(s) of w	eek Mond	ay - Friday	′	Ti	Time of day 9 am, 11am, 3pm			
D. Flow rate (gpm) 30					Percent of t			

of materials, I Indicate which of each waste	Flow Diagram: For each major activity in whoroducts, water, and wastewater from the start h processes use water and generate wastestream stream (new facilities may estimate). If estimate g wastewater discharges to the public sewer. Usion H.	of the activity to its comp ms. Include the average d tes are used for flow data	oletion, showing a aily volume and i , this must be ind	all unit processes. maximum daily volume icated. Number each unit
See Attachn	nent 1. Values are estimates.			
Facilities tha question 6 in	t checked activities in Section B (1) may be section E.	considered a Categorica	ll Industrial Use	r and should proceed to
(batch, conti	tegorical Users Only: List an average was nuous, or both), for each plant process. Incl to each process. (New facilities should provide	ude the reference numb	er from the proc harge)	
No.	Process Description	Avg Flow	Maximum	Type of Discharge
	•	(GPD)	Flow (GPD)	
A nawan ayaa	tions 6 and 7 only if you are subject to categ	ropical protreatment sta	ndonda	
processes. In	corical Users: Provide the totals of wastewated aclude the reference number from the process should provide estimates for each discharge) Regulated Process	ss schematic that corres		
No.	Unregulated Process	Average Flow (GPD)	Maximum Flow (GPD)	Type of Discharge
1	Stream 1 pretreatment discharge	480	480	Batch (2/day, 9 & 11am)
2	Stream 2 pretreatment discharge	160	160	Batch (1/day, 3 pm)
A. Does (or the applied B. Has a base	orical users subject to Total Toxic Organic will) this facility use any of the toxic organic cable categorical pretreatment standards pueline monitoring report (BMR) been submit	es that are listed under to ablished by EPA? tted which contains TTC	he TTO standar	d of Yes No
C. Has a tox	ic organics management plan (TOMP) been	developed?		☐ Yes ☐ No

	ou have, or plan to have, a acility?	utomat	ic sam	pling e	quipmo	ent or con	tinuous wastewater flow met	ering	equip	ment	at	
Current	Flow Metering		es ✓ es ✓	No [No [NA NA	Planned	<u> </u>	Yes \[\] Yes \[\]			A A	
If so, ple						ipment or						
	If so, please indicate the present or future location of this equipment on the sewer schematic and describe the equipment below											
9. Are a	ny process changes or exp	ansion	s planr	ned dur	ing the	next thr	ee vears					
	could alter wastewater vol		_				Yes No					
	oction processes as well as nay affect the discharge.	air or	water _l	pollutio	on treat	tment pro	cesses (If no, continue t	to que	stion	11)		
	·	and th	eir effe	ects on	the wa	stewater	volume and characteristics:					
(Atta	ach additional sheets if need	led)						l	4	4:		
would re	anticipating a scale-up	proce	SS OVE	er the	next 3	years. S	Streams 1 and 2 contents/ ,250 gpd and 800 gpd res	conc	entra	lions	and l	
that, the	e maximum flows could	increa	ase to	15.75	0 apd	ase to 2, and 5.60	,200 gpd and 000 gpd res 00 apd. respectively.	pecu	very.	Беус	ли	
	any materials or water re				٠.			ntinu	e to se	ction	F)	
12. Brie	fly describe recovery proc	ess, su	bstance	e recov	ered, p	ercent re	covered, and the concentratio	n in t	he spe	nt		
	Submit a flow diagram fo								_		_	
				H of the	he sol	ution, ca	using material to precipita	ite. Th	nis m	ateri	al	
is collec	cted prior to solution dis	cnarg	e.									
	SE	CTION	1 F – (CHAR	ACTE	RISTICS	OF DISCHARGE					
Priority	Pollutant Information: P	lease in	dicate l	ov selec	cting fro	om the che	eck boxes below for each listed	chem	ical w	hethe	r it	
							ent," or "Known to be Present"				- 10	
		_		~ 1			pounds are known by other nar		Compo	unds		
with an a	sterisk (*) indicate possible	synon	ym listi	ng- Se	e Priori	ty Polluta	nt synonym list in Appendix A		1		1	
Item No.	Chemical Compound	Suspected Absent	Known Absent	Suspected Present	Known Present	Item No.	Chemical Compound	Suspected Absent	Known Absent	Suspected Present	Known Present	
1.	Asbestos (fibrous)		\mathbf{x}	\square		66.	1,2-dichloroethane*	\square	X	$\frac{\bar{\mathbf{v}}}{\Box}$		
2.	Cyanide (total)		X		H	67.	1,1-dichloroethene*		įΩ.	+	H	
3.	Antimony (total)][X			68.	Trans-1,2-dichloroethene*		\mathbf{x}	+	H	
4.	Arsenic (total)		K.			69.	2,4-dichlorophenol			一	H	
5.	Beryllium (total)		K.			70.	1,2-dichloropropane*			+	H	
6.	Cadmium (total)][X	1		71.	(cis & trans) 1,3-		\mathbf{x}	+	H	
7.	Chromium (total)				X	72.	Dieldrin		K.	一	H	
8.	Copper (total)][$\overline{\mathbf{X}}$			73.	Diethyl phthalate*		X	+	H	
9.	Lead (total)				X	74.	2,4-dimethylphenol*		∇	H	H	
10.	Mercury (total)		\mathbf{x}			75.	Dimethyl phthalate		\mathbf{x}	+		
11.	Nickel (total)				X	76.	Di-n-butyl phthalate	H	X.	붐	H	
12.	Selenium (total)		<u></u>			77.	Di-n-octyl phthalate*	H	X	 		
13.	Silver (total)	\mathbf{x}				78.	4,6-dinitro-2-methylphenol*	H	X	 		
14.	Thallium (total)		<u> </u>			79.	2,4-dinitrophenol	片		 	H	
	` ´	X					, <u>.</u>	片	X	믐	片	
15.	Zinc (total)		₽			80.	2,4-dinitrotoluene	片	X	 	片	
16.	Acenaphthene		X V			81.	2,6-dinitrotoluene	H	X.	 		
17.	Acenaphthylene		X	Ш	Ш	82.	1,2-diphenylhydrazine*		X	Ш	$\sqcup \sqcup \sqcup$	

Item No.	Chemical Compound	Suspected Absent	Known Absent	Suspected Present	Known Present	Item No.	Chemical Compound	Suspected Absent	Known Absent	Suspected Present	Known Present
18.	Acrolein		X			83.	Endosulfan 1*		X		
19.	Acrylonitrile		X			84.	Endosulfan 11*		k		
20.	Aldrin		X			85.	Endosulfan sulfate		X		
21.	Anthracene					86.	Endrin		x		
22.	Benzene		K			87.	Endrin aldehyde		x		
23.	Benzidine		X			88.	Ethylbenzene		х		
24.	Benzo (a) anthracene*		\mathbf{k}			89.	Fluoranthene		x		
25.	Benzo (a) pyrene*		X			90.	Fluorene*		x		
26.	Benzo (b) fluoranthene*		X			91.	Heptachlor		х		
27.	Benzo (g,h,i) perylene*		\square			92.	Heptachlor epoxide		x		
28.	Benzo (k) fluoranthene*		X			93.	Hexachlorobenzene*		X		
29.	a-BHC (alpha)		k			94.	Hexachlorobutadiene		x		
30.	b-BHC (beta)		X			95.	Hexachlorocyclopentadiene*		x.		
31.	d-BHC (delta)		X			96.	Hexachloroethane*		x		
32.	g-BHC (gamma)*		X			97.	Indeno (1,2,3-cd) pyrene*		x		
33.	Bis (2-chloroethyl) ether*		X			98.	Isophorone*		X		
34.	Bis (2-chloroethoxy)		X			99.	Methylene chloride*		X		
35.	Bis (2-chloroisopropyl)		x			100.	Naphthalene		X		
36.	Bis (chloromethyl) ether*		X			101.	Nitrobenzene		х		
37.	Bis (2-ethylhexyl)		X			102.	2-nitrophenol*		X		
38.	Bromodichloromethane*		X			103.	4-nitrophenol*		х		
39.	Bromoform*		X			104.	N-nitrosodimethylamine*		X		
40.	Bromomethane*		X			105.	N-nitroso-di-n-propylamine*		X		
41.	4-bromophenylphenyl		X			106.	N-nitrosodiphenylamine*		x		
42.	Butylbenzyl phthalate		X			107.	PCB-1016*		x		
43.	Carbon tetrachloride*		X			108.	PCB-1221*		x		
44.	Chlordane		X			109.	PCB-1232*		X		
45.	4-chloro-3-		х			110.	PCB-1242*		X		
46.	Chlorobenzene		X			111.	PCB-1248*		х		
47.	Chloroethane*		X			112.	PCB-1254*		k.		
48.	2-chloroethylvinyl ether		X.			113.	PCB-1260*				
49.	Chloroform*		X			114.	Pentachlorophenol				
50.	Chloromethane*		Х			115.	Phenanthrene		X		
51.	2-chloronaphthalene		X			116.	Phenol		X		
52.	2-chlorophenol*		X			117.	Pyrene		x		
53.	4-chlorophenylphenyl ether		X			118.	2,3,7,8-tetrachlorodibenzo- p-dioxin*		k		
54.	Chrysene*		K			119.	1,1,2,2-tetrachloroethane*		x		
55.	4,4 - DDD*		K			120.	Tetrachloroethene*		K		
56.	4,4 - DDE*		X			121.	Toluene*		\mathbf{k}		
57.	4,4 - DDT*		x			122.	Toxaphene		\mathbf{x}		
58.	Dibenzo (a,h)		x			123.	1,2,4-trichlorobenzene		x		
59.	Dibromochloromethane*		X			124.	1,1,1-trichloroethane*		K		
60.	1,2-dichlorobenzene*		x			125.	1,1,2-trichloroethane*		x		

61.	1,3-dichlorober	nzene*	[X.				126.	Trichloroethene*	Trichloroethene*				
62.	1,4-dichlorober	nzene*	[X				127.	Trichlorofluorom	ethane*		x		
63.	3,3-dichlorober	nzidine	[k				128.	2,4,6-trichlorophe	enol		k		
64.	Dichlorodifluor	romethane	e [X				129.	Vinyl chloride*			X		
65.	1,1-dichloroeth	ane*	[x										
	of the chemical ach additional s				are in	dicat	ed to	o be '	Known Pres	ent," please list a	nd provide t	the foll	lowing	g data	for
(Item No.				ical Co	mpo	und	l	Annual	Usage (lbs.)	Estima	ted Lo		Sewe	r
7		Cl	hror	nium)				Shred componer	nt- non-target material	0.83 lb/yr	<u> </u>			
9			ead						Shred componer	nt- non-target material	0.08 lb/yr				
11		-	cke	ı					Shred componer	nt- non-target material	4.17 lb/yr				
<u> </u>				<u> </u>					'	<u> </u>	i, y.				
					SE	CTI	ON	G-	TREATME	ENT					
Is any fo	rm of wastewa	ter treatr	nen	t (see	full lis	st be	low) pra	cticed at thi	s facility?	✓ Yes 🔲	No			
	orm of wastewa nt) planned for				_				0	ter [Yes (des	cribe	below) 🔽 N	No
Treati	ment devices or	processe	es us	sed o	r prop	osed	for	treat	ting wastewa	ater or sludge (cl	heck as ma	ny as a	appro	priate	e)
Air flo	otation	☐ Cycl	one				Gri	ndin	g filter	Reverse osn	nosis [Solv	ent se	parat	ion
☐ Centr	ifuge		atio	n			Gri	t ren	noval	☐Screen		_Spil	l prot	ection	ì
☐Chem precip	ical itation	☐ Flow	eq	ualiz	ation	abla	Ion	exch	ange	Sedimentati	ion [Sum	ıp		
□Chlorination □Grease trap □Ozonation						natio	on	Septic tank							
Rainv	vater diversion	or storag	ge			\overline{V}	Net	ıtrali	zation, pH o	correction					
Grea	se or oil separa	tion (list													
Biolog	gical treatment	(list type	e)												
Other	physical treati	ment (list	t												

	-1	1 4	4 4 (1.4											
Other chemical treatment (list															
	Other (list type) Describe the pollutant loadings, flow rates, design capacity, physical size, and operating procedures for each treatment														
facility ch	necked ຄ ange an tate and	ibove d pH d filter	(attach neutral conter	addition ization v nts. A pl	nal sheets if i via calcium o H meter will	necessa carbon	ary) ate ar	nd (calcium	hyd	roxide wi	ll be p	erfor	med in a n	nix tank
	Attach a process flow diagram for each existing treatment system. Include process equipment, by-products, by-product disposal method, waste and by-product volumes, and design and operating conditions.														
to the Cit The syst the only	Describe any changes in treatment or disposal methods planned or under construction for the wastewater discharge to the City of Boone sanitary sewer. Please include estimated completion dates The system described above is in it's final R&D. Should changes be made to the process described above, the only difference would be the filtration technique, the chemical properties of the discharge should not become more concentrated.														
Do you ha	ave a wa	astewa	ater trea	atment (perator?	☐ Yes	(If ye	es a	nswer q	uesti	ion 7 belo	w)		✓ No	
7. Name	of Oper	ator						T	Title						
Phone	_					Em	ail Ad	ldr	ess						
Specify O	peratin	g Hot	ırs		Monday	Tues	day	W	ednesda	ay	Thursday	y Fri	iday	Saturday	Sunday
	me emp														
Part ti	me emp	loyee													
Do you ha	ave a wi	ritten	manual	on the	correct oper	ation o	f your	tr	eatment	equi	ipment?		Yes	✓ No (ln-p	
Do you ha	ave a wi	ritten	mainte	nance sc	hedule for y	our tre	eatmei	nt e	equipme	nt?			Yes	✓ No depe	endent on results)
			SECT	TION H	I – FACILI'	TY OP	PERA'	TI(ONAL (CHA	RACTE	RISTI	CS		,
						Shift 1	Inforn	nat	tion						
				onday	Tuesday	Wed	dnesda	ay	Thui			iday	S	aturday	Sunday
	rk days		_	χ	X		X		X		x				
Shifts per	work d	_	1		1	1		1			1				
Employee	es per	1 st	8		8	8		8			8				
shift	•	3 rd													
		1 st	8am-4	Inm	8am-4pm	8am-	1nm		8am-4p	m	8am-4p	ım.			
Shift star	t and	2 nd	Oan-	rpiii	oam- 4 pm	- Oani-	трііі		oaiii-4p	'111	Oaiii-4	7111			
end time		3 rd													
									T-	f con	conal ind	icata l	alow	the month	s of the
Is busines	ss activi	ty 🔽	∠ Conti	nuous t	hrough the y	ear [Seas	ona	อเ		,			iness activi	
January	Februa	ary	March	April	May	June	July	A	August			Octob		November	December
Commen	ts														
Is dischar	If seasonal, indicate below the months of the year during which the business activity occurs If seasonal, indicate below the months of the year during which the business activity occurs														
January	Februa	ıry	March	April	May	June	July	A	August	Sep	tember	Octob	er	November	December
Commen															
					n, maintenar	ice, or	any of	the	r	∠ Y	Yes (if ye	s indic	ate b	elow reaso	ns) 🔲
Operation	s shut d	own fo	or federa	al holiday	/S.										

List types and amounts (mass or volume per day) of raw ma Shredded hard disc drives, magnet swarf, scrap rare of								
List type and quantity of chemicals used or planned for use of MATERIAL SAFETY DATA SHEETS FOR ALL CHEMICAL CHE								
Chemical	Quantity							
Calcium carbonate	289 kg/day (estimated)							
Calcium hydroxide	72 kg/day (estimated)							
Building Layout – Include a scale map or drawing of the orientation and location of all water meters, storm drains, republic sewers, and each facility sewer line connected to the existing and proposed sampling locations. A blueprint or of attached in lieu of submitting a drawing on this sheet.	numbered unit processes (from schematic flow diagram), City of Boone sewer. Number each sewer and show							
SECTION I – SPII	LL PREVENTION							
Do you have chemical storage containers, tanks, vessels, etc.	at your facility?							
f yes, please give a description of their location, contents, size, type, and frequency and method of cleaning. Also ndicate in a diagram or comment on the proximity of these containers to a sewer or storm drain. Indicate if buried netal containers have cathodic protection.								
Do you have floor drains in your manufacturing or chemical	storage area(s)?							
Where do they discharge to? Main sewer.								

•	, tanks, vessels, etc. in the ma	anufacturing area, could an accidental spill lead to									
a discharge to (check all that apply)		N/A N									
An onsite disposal system	Storm drain	N/A, No possible discharge to any route									
Sanitary sewer system (e.g. through a flo	-	Other									
sludge discharges from entering the was		or SPCC plan to prevent spills of chemicals or									
		required within 90 days of issuance of permit									
Tes (preuse enclose a copies with app	meanion) <u>Brag Control I fair</u>	required within 50 days of issuance of perime									
☑ No - Slug Control Plan required with											
Please describe below any previous spill events (within last three years) and remedial measures taken to prevent their											
reoccurrence											
N/A											
SEC	CTION J – NON-DISCHAR	GED WASTES									
Are any waste liquids or sludge materia											
Yes (Please describe belo	ow) X	No (Please continue to section K)									
Waste Generated	Quantity (Per Yea	ar) Disposal Method									
Indicate which wastes identified above a	are disposed of at an off-site	facility and which are disposed of on-site									
If any of your wastes are sent to an off-s	ite centralized waste treatm	ent facility, identify the waste and the facility									
If an outside firm removes any of the ab	ove listed wastes, state the n	ame(s) and address(es) of all waste haulers									
Name	Address	Permit No.									
Have you been issued any Federal, State	e, or local environmental per	mits?									
SEC	TION K – AUTHORIZED	SIGNATURES									
	Compliance Certifica	ation									
Are all applicable Federal, State, or loca	al pretreatment standards ar	nd requirements being met on a consistent basis?									
☐ Yes ☐ No (if no answer question	below)	arging									
=	<u> </u>	considered to bring the facility into compliance?									
<u>-</u>	_	ed in order to bring the facility into compliance									

Provide a schedule for bringing the facility into compliance. completion dates. Note that if the City of Boone issues a percompliance different from the one submitted by the facility.	
Milestone Activity	Completion Date
Authorized Representativ	e Certification Statement
I certify under penalty of law that this document and all supervision in accordance with a system designed to assevaluate the information submitted. Based on my inquithose persons directly responsible for gathering the informy knowledge and belief, true, accurate, and complete. submitting false information, including the possibility of	sure that qualified personnel properly gather and ry of the person or persons who manage the system, or ormation, the information submitted is, to the best of I am aware that there are significant penalties for
Owner/Authorize	d Representative
First Name Last Name	13,19
Title CEO	
•	
Written Signature	
Date 5 0 6 2023	

APPENDIX A – PRIORITY POLLUTANT SYNONYM LISTING

T.	Chemical	G	T.	Chemical	g.
Item	Compound	Synonym	Item	Compound	Synonym
		Actinolite, Amosite,	2.5	bis(2-chloroisopropyl)	
1	Asbestos	Antophyllite, Chrysotile, Crocidolite, Tremolite	35	ether	2,2'-Dichloroisopropyl ether
		Hydrogen Cyanide,			2,2 -Dichloroisopropyr ether
2	Cyanide	Potassium Cyanide, Sodium	36	bis(chloromethyl)ether	
	•	Cyanide		• /	(sym)Dichloromethyl ether
3	Antimony	Stibium	37	bis(2-ethylhexyl)	
	•	A		phthalate Bromodichloromethane	2,2'-Diethylhexyl phthalate Dichlorobromomethane
5	Arsenic Beryllium	Arsenia Glucinium	38 39	Bromoform	Tribromomethane
9	Lead	Plumbum	40	Bromomethane	Methyl bromide
	Douc		43	Bromomenane	- Nacing Foreing
10	Mercury	Hydrargyrum; Liquid		carbon tetrachloride	Tetrachloromethane
10	G'1	Silver, Quick Silver	4.5	4 11 2 4 11 1	D 11
13	Silver	Argentum 1,2-	45 47	4-chloro-3-methylphenol	Para-chloro-meta-cresol
		Dihydroacenoaphthylene;	4/		
16	Acenaphthene	Periethylenenaphthalene;		chloromethane	Ethylchloride
		1,8-Ethylenenaphthalene			
		2-Propenal; Propenal; Allyl	49		
18	Acrolein	aldehyde, Acraldehyde;		chloroform	Trichloromethane
		Acrylaldehyde, Acrylic aldehyde, Aqualin			
		2-Propenenitrile;	50		
		Propenenitrile, Vinyl			
19	Acrylonitrile	cyanide, Cyanoethylene;		chloromethane	Methyl chloride
		Acritet; Fumigrain; Ventox;			
		Acrylonitrile monomer	52		
		1,2,3,4,10, 10-Hexachloro- 1,4,4a,5,8,8a-Hexahydro-	52		
20	411.	1,4:5,8-			D 11 1 1
20	Aldrin	Dimethanonaphthalene;		2-chlorophenol	Para-chlorophenol
		HHDN; Compound 118;			
		Octalene Descriptions of the control of the contro	54		
22	Benzene	Benzol; Cyclohexatriene, Phenyl hydride	54	Chrysene	1,2-Benzphenanthrene
		4,4'-Bianiline; 4,4'-	55		
		Biphenyldiamine; 1,1'-			Dichlorodiphenyldichlorethane,
23	Benzidine	Biphenyl-4,4'-diamine;		4,4'-DDD	p,p'-tde,
		4,4'-Diaminobiphenyl; p-			Tetrachlorodiphenylethane
		Diaminodiphenyl 1,2-Benzanthracene, 2,3-	56		
24	Benzo(a)anthracene	Benzphenenthrene	30	4,4'-DDE	Dicholodiphenyldichloroethylene
25	Benzo(a)pyrene	3,4-Benzopyrene	57	4,4'-DDT	Dichlorodiphenyltrichloroethane
		2,3-Benzfluoranthen	58		
		2,3-Benzofluoranthene			
26	Danza(h)fluaranti	3,4-		Dihanga(a h)antl	1.2.5.6 dibanganthus
26	Benzo(b)fluoranthene	Benz(e)acephenathrylene 3,4-Benzfluoranthene		Dibenzo(a,h)anthracene	1,2,5,6-dibenzanthracene
		3,4-Benzofluoranthene			
		Benz(e)fluoranthene	<u> </u>		
27	Benzo(g,h,i)perylene	1,12-Benzoperylene	59	Dibromochloromethane	Chlorodibromomethane
28	Benzo(k)fluoranthene	11,12-Benzofluoranthene	60	1,2-dichlorobenzene	Ortho-dichlorobenzene
32	g-BHC (gamma)	Lindane	61	1,2-dichlorobenzene	Meta-dichlorobenzene
33	bis(2-chlorethoxl) methane	2,2'-Dichlorethyl ether	62	1,4-dichlorobenzene	Para-dichlorobenzene

APPENDIX A – PRIORITY POLLUTANT SYNONYM LISTING

Item	Chemical Compound	Synonym	Item	Chemical Compound	Synonym
64	Dichlorodifluoromethane	Difluorodichloromethane, Flurocarbon-12	102	2-nitrophenyl	Para-nitrophenyl
65	1,1'dichloroethane	Ethylidene chloride	103	4-nitrophenyl	Ortho-nitrophenyl
66	1,2-dichloroethane	Ethylene chloride, Ethylene dichloride	104	N-nitrosodimethylamine	Dimethylnitrosoamine
67	1,1-dichloroethane	1,1-Dichloroethylene	105	N-nitrosodi-n- propylamine	n-Nitro-di-n-propylamine
68	trans-1,2-dichloroethene	Acetylene dichloride	106	N-nitrosodipheynylamine	Diphenyl-nitrosoamine
70	1,2-dichloropropane	Propylene dichloride	107	PCP-1018	Arochlor-1018
71	(cis & trans) 1,3- dichloropropane	(cis & trans) 1,3 Dichloropropylene	108	PCB-1221	Arochlor-1221
73	Diethylphthalate	Ethyl phthalate	109	PCB-1232	Arochlor-1232
74	2,4-dimethylphenol	2,4-zylenol	110	PCB-1242	Arochlor-1242
77	di-n-octyl phthalate	Di(2-ethylhexyl)phthalate	111	PCB-1248	Arochlor-1248
78	4,6-dinitro-2-methylphenol	4,6-Dinitro-octyl-cresol	112	PCB-1254	Arochlor-1254
82	1,2-diphenylhydrazine	Hydrazobenzene	113	PCB-1260	Arochlor-1260
83	Endosulfan I	a-Endosulfan-alpha	118	2,3,7,8- tetrachlorodibenzo-p- dioxin	TCDD
84	Endosulfan II	b-Endosulfan-beta	119	1,1,2,2-tetrachloroethene	Acetylene tetrachloride
90	Fluorene	(alpha)-Diphylene methane	120	Tetrachloroethene	Perchloroethylene, Tetrachloroethylene
93	Hexachorbenzene	Perchlorobenzene	121	Toluene	Methylbenzene toluol
95	Hexachlrocyclopentadiene	Perchlorocyclopentadiene	124	1,1,1-trichloroethane	Methyl chloroform
96	Hexachloroethane	Perchloroethane	125	1,1,2-trichloroethane	Vinyl trichloride
97	indeno-(1,3,3-cd) pyrene	2,3-ortho-Phenylene pyrene	126	Trichloroethane	Trichloroethylene
98	Isophorone	3,5,5-Trimethyl-2- Cyclohexene-1-one	127	Trichlorofluoromethane	Fluorocarbon-11; Fluorotrichloromethane
99	Methylene chloride	Dichloromethane	129	Vinyl chloride	Chloroethene; Chloroethylene

Stream 1 Discharge (No. 1)

(See 'Elemental Analysis' attachment for composition)

Stream 2 Discharge (No. 2)

(See 'Elemental Analysis' attachment for composition)

TEST REPORT

PHONE: 515-310-1012

The reported test results relate only to the item(s) tested

Customer ID: City of Boone Date: 07/27/2023

Stream 1 Discharge (No	. 2)			
Elements	Experimental (%)	Results (%)	Method	Comments
Ca	0.07	8.90	ICP-MS	-
Co	0.006	0.76	ICP-MS	-
Cr	0.003	0.382	ICP-MS	-
Cu	<0.001 (BDL)	<0.127	ICP-MS	-
Dy	<0.001 (BDL)	<0.127	ICP-MS	-
Fe	0.67	85.242	ICP-MS	-
Na	0.005	0.636	ICP-MS	-
Nd	<0.001 (BDL)	<0.127	ICP-MS	-
Ni	0.006	0.76	ICP-MS	-
Pb	0.02	2.544	ICP-MS	-
Pr	<0.001 (BDL)	<0.127	ICP-MS	-
Sn	<0.001 (BDL)	<0.127	ICP-MS	-
Zn	<0.001 (BDL)	<0.127	ICP-MS	-
TOTAL:	-	100%	-	-

Stream 2 Discharge (No.	2)			
Elements	Experimental (%)	Results (%)	Method	Comments
Ca	<0.005 (BDL)	<1.700	ICP-MS	-
Со	<0.001 (BDL)	<0.340	ICP-MS	-
Cr	<0.001 (BDL)	<0.340	ICP-MS	
Cu	<0.001 (BDL)	<0.340	ICP-MS	-
Dy	<0.001 (BDL)	<0.340	ICP-MS	-
Fe	0.014	4.762	ICP-MS	-
Nd	<0.001 (BDL)	<0.340	ICP-MS	-
Ni	<0.001 (BDL)	<0.340	ICP-MS	-
Pb	<0.001 (BDL)	<0.340	ICP-MS	-
Pr	<0.001 (BDL)	<0.340	ICP-MS	-
Na	<0.005	<1.700	ICP-MS	
Sn	<0.001 (BDL)	<0.340	ICP-MS	-
Zn	<0.001 (BDL)	<0.340	ICP-MS	-
Ammonium (NH ₄ ⁺)	0.26	88.435	-	-
TOTAL:	-	100%	-	-

^{*}BDL: below detectable limit

August 2023

City of Boone, Iowa

Water & Wastewater Treatment Facilities, Storage, and Lift Stations Monthly Operations & Maintenance Report

Prepared by:

1406 Central Avenue Fort Dodge, IA 50501 (515) 269-2338 Prepared For:

923 8th Street Boone, IA 50036 (515) 432-4211 August 2023

City of Boone William J. Skare, City Administrator 923 8th Street Boone, IA 50036

August Monthly Water & Wastewater Operations Report

Dear Mr. Skare:

In accordance with contract requirements, we are pleased to provide the following monthly report for August 2023. Below is a list of the significant events that occurred during the month:

SUBMITTED TO: William J. Skare, City Administrator

Utility Committee and City Council, City of Boone Aaron Voss, U.S. Water Services Corporation

We appreciate the opportunity to be of service to the City of Boone. We are available to discuss this report, or any other aspect of our operations, at your convenience. Should you have any questions or need additional information, please do not hesitate to contact us.

Sincerely,

J.D. Roberts, Water Environment Plant Supervisor USW Utility Group (712) 259-0805 JRoberts@USWaterCorp.net Dave Moore, Water Works Supervisor USW Utility Group (515) 230-3130 DMoore@USWaterCorp.net

WATER

Water Treatment Facility

F	inished Wa	ter Monthly Flows and Hard	ness
		August-2022	August-2023
Water	Units		
Average Daily Pumped	gallons	1,970,000	1,939,000
Maximum Daily Pumped	gallons	2,225,000	2,319,000
Minimum Daily Pumped	gallons	1,651,000	1,502,000
Hardness			
Hardness - Avg Raw	grains	19.6	17.7
Hardness - Avg Finish	grains	9.6	9.1
Iron mg/I			
Avg Raw	mg/L	.01	.01
Avg Finish	mg/L	.01	.01
Fluoride mg/l			
Avg Raw Fl.	mg/L	.62	.60
Avg Finish Fl.	mg/L	.71	.72

Water Storage

During the month of August, all three water towers were in operation as well as the 2 million gallon reservoir and 100,000 gallon contact basin for a total of 3,700,000 gallons of storage.

Maintenance Report

During the month of August staff rotated lime slakers, cleaned and serviced slaker #2, verified turbidity meters weekly, calibrated turbidity meters, cleaned and verified calibration on CL2 analyzers weekly, and replaced rooftop dehumidifier filters. Staff mowed grass at Water Plant, Water Towers, and Pump Station, around lime ponds, sprayed weeds at water towers and plants, and mowed well field. They installed new sample lines on Claricone #1, repaired brush mower attachment for John Deere diesel

tractor, repaired ventilation fans at pump station and blower room at main plant, repaired phosphate feed line, and replaced chlorine cylinder vent tubing. Serviced electric solenoid on high service pump #1, fumigated pump room for insects, repaired PLC at industrial water tower, repaired water tower phone lines, serviced septic system, and cleaned and serviced water distiller.

Current & Planned Projects

During the month of September staff plans to continue cutting and trimming trees, replace Backflow Preventer valves on Claricones, replace tubing on CL-17's, clean inside of Claricone #1, and remove trees around wells and well field. Misc. mowing and maintenance. Begin scheduling work in anticipation of SCADA upgrade project with Automatic Systems.

Health & Safety

There were no safety violations to report for the current month.

The subjects of the monthly safety training were: Personal Fall Arrest Systems, Office Safety, Cutting Pipe Safely, Temperature Extremes, Safe Use of Compressed Air and Working At Altitude.

Regulatory Reports

See attached documents

WASTEWATER

Wastewater Treatment Facility

During the month of August

	Wastewater Treatment Facilit	ty Flows	
	Plant Influent	Plant Effluent	Units
Total	63.7	•	MGD
Average per day	2.05	•	MGD
Minimum	1.38	•	MGD
Maximum	4.90	•	MGD

			Wastewa	ater Influe	ent & Efflu	ent Qualit	У				
	Influer	fluent									
Parameter	Daily Ave MG/L	Daily Ave LBS/Day	Daily Max MG/L	Permit Daily MG/L Limit	7 Day Max Ave MG/L	Permit 7 Day Max Limit	30 Day Average	Permit 30 Day Ave			
BOD ₅	137.6	137.6 2420.8 • • • •									
CBOD ₅	•	•	3	•	3	40	3	25			
Suspended solids	112.9	1928.4	7	•	3	45	3	30			
Nitrogen Ammonia	14	200	.1	17.6	.1	•	.1 MG/L	1.0 MG/L			
Nitrate Nitrogen	•	•	62 LBS/Day	1075 LBS/Day	•	•	•	657 LBS/Day			
Dissolved Oxygen	•	•	8.7	>5.0	8.52	•	8.24	>5.0			
рН	7.4	7.4 • 8.0 6.5 to 9 7.9 • 7.87 6.5 to 9 STD Units									

ND= No Detection

• = No limit set

Solids Inventory

During the month of August, we pressed for 6 days (198,000 gallons) and hauled 45.29 tons to the landfill.

Lift Stations

Lift Station on Airport Rd. has problems with Pump 1 not pumping for a while. It is unable to prime or keep a prime when the pump is off.

Generator Install at 14th and Division (no time frame)

Generator Install at 220th Lift Station (no time frame)

8-4-23 Replaced Batteries in UPS 220th Lift-station

Maintenance Report

8-21-23 Replaced bearing on West Aerator for VLR #2

Half of the UV System is working but the hydraulics are not. We are unable to work the wipers or lift the banks out of the water. Trojan, Fox Engineering, and King Construction are aware of the issues.

Fifty-six (56) Preventive Maintenance Work Orders were Completed in August.

Current & Planned Projects

RAS pumps replacement-(currently in Engineering)

Sand Blasting on North Clarifier: Owner tore his rotator cuff, not sure if this is going to get completed this fiscal year.

Roof Replacements-(currently in Engineering)

In-plant Lift Station-(currently in Engineering)

Preliminary Screen Install-(currently in Engineering)

Health & Safety

There were no safety violations to report for the current month.

The subjects of this month's safety training were Fire Extinguisher Safety, Personal Fall Arrest Systems, Office Safety, Cutting Pipe Safely, Temperature Extremes, Safe Use of Compressed Air and Working At Altitude.

Regulatory Reports

See attached documents

SURFACE WATER/INFLUENCED GROUNDWATER MONTHLY OPERATION REPORT IOWA DNR WATER SUPPLY SECTION

Basic Information

S/EP #: 1

SYSTEM NAME: Boone Water Works PWSID #: 0819033 MONTH: August YEAR: 2023

	Pum	page	Operating	Fluc	ride				Chlorine	Residua	l			СТ	
			Hours			Sour	ce/Entr	y Point	(S/EP)		Distril	oution			Used
D A Y	Raw in 1,000s Gallons Per Day	To System in 1,000s Gallons Per Day	Number of Hours of Treatment Plant Operation Per Day	Quantity Used in Ibs.	Finished Water (mg/L)	Number of Tests Taken*	Specify Free (F) or Total (T)	Lowest Measured Residual (mg/L)	Continuous Hours Less Than 0.3 mg/L Free or 1.5 mg/L Total	Number of Tests Taken	Lowest Measured Residual Free (mg/L)	Number With Undetected Residual	Highest Measured Residual Free (mg/L)	Ratio of CT Obtained to CT Required	Chlorine in lbs.
1	2,449	2,039	20.75	35	0.72	"C"	(F)	2.03	0	1	0.96	0	0.96	14.6	74
2	2,306	1,922	19.50	31	0.73	"C"	(F)	2.05	0	1	0.91	0	0.91	16.3	68
3	2,383	2,008	20.00	34	0.67	"C"	(F)	2.00	0	1	0.96	0	0.96	15.5	51
4	2,373	1,974	20.00	35	0.77	"C"	(F)	1.98	0	1	0.91	0	0.91	15.1	63
5	2,349	1,971	20.25	33	0.70	"C"	(F)	2.03	0	1	0.90	0	0.90	15.6	62
6	1,993	1,670	17.25	27	0.66	"C"	(F)	2.03	0	1	0.89	0	0.89	18.3	51
7	2,208	1,848	19.00	29	0.65	"C"	(F)	1.96	0	1	0.86	0	0.86	16.0	57
8	2,198	1,821	19.75	30	0.70	"C"	(F)	2.00	0	9	0.72	0	1.57	16.7	59
9	2,115	1,770	19.00	31	0.68	"C"	(F)	2.03	0	1	0.82	0	0.82	17.3	55
10	2,109	1,794	20.50	17	0.68	"C"	(F)	2.01	0	1	0.83	0	0.83	16.4	52
11	2,082	1,742	21.50	32	0.71	"C"	(F)	1.99	0	1	0.75	0	0.75	16.4	55
12	2,098	1,743	20.50	28	0.76	"C"	(F)	1.94	0	1	0.80	0	0.80	15.9	54
13	1,954	1,610	19.25	28	0.82	"C"	(F)	1.95	0	1	0.81	0	0.81	18.2	50
14	2,193	1,953	19.75	30	0.79	"C"	(F)	1.92	0	7	0.36	0	0.80	15.6	59
15	1,798	1,502	18.00	22	0.77	"C"	(F)	1.97	0	2	0.82	0	1.21	20.0	46
16	2,285	1,908	23.50	28	0.70	"C"	(F)	1.92	0	1	0.85	0	0.85	16.2	63
17	2,193	1,801	20.25	32	0.67	"C"	(F)	1.99	0	1	0.70	0	0.70	17.1	59
18	2,188	1,808	19.50	34	0.68	"C"	(F)	1.99	0	1	0.72	0	0.72	16.8	59
19	2,313	1,931	20.75	34	0.80	"C"	(F)	1.93	0	1	0.77	0	0.77	16.1	61
20	2,264	1,890	20.25	28	0.71	"C"	(F)	1.90	0	1	0.77	0	0.77	16.7	59
21	2,469	2,070	21.25	33	0.68	"C"	(F)	1.98	0	1	0.75	0	0.75	15.3	65
22	2,787	2,279	24.00	39	0.70	"C"	(F)	1.99	0	1	0.81	0	0.81	13.9	73
23	2,622	2,179	20.00	37	0.78	"C"	(F)	1.92	0	1	0.77	0	0.77	14.3	70
24	2,724	2,224	21.50	36	0.73	"C"	(F)	2.05	0	1	0.81	0	0.81	14.9	72
25	2,484	2,033	20.50	36	0.70	"C"	(F)	2.13	0	1	0.87	0	0.87	17.8	66
26	2,437	2,000	20.25	34	0.70	"C"	(F)	2.01	0	1	0.85	0	0.85	17.4	64
27	2,538	2,057	21.00	37	0.72	"C"	(F)	2.05	0	1	0.79	0	0.79	16.9	70
28	2,434	2,056	22.25	33	0.72	"C"	(F)	2.06	0	1	0.81	0	0.81	17.0	69
29	2,869	2,319	23.75	41	0.71	"C"	(F)	2.05	0	1	0.80	0	0.80	14.7	74
30	2,299	2,002	20.75	32	0.69	"C"	(F)	2.03	0	1	0.80	0	0.80	19.3	55
31	2,602	2,180	23.50	36	0.68	"C"	(F)	1.91	0	1	0.83	0	0.83	15.8	65
Total	72,116	60,104	638.00	992						46		0			1,900
Avg	2,326	1,939	20.51	32	0.72										61
Max	2,869	2,319	24.00	41	0.82				0				1.57		74
Min	1,798	1,502	17.25	17	0.65			1.90			0.36			13.9	46

*If continuous monitoring of chlorine is provided, enter "C" in the space provided.

I certify that I am familiar with the information contained in this report and that the information is true, complete, and accurate.

DRC	Operator'	s or Desi	gnee's Si	gnature:	David Moore
Certificate #:	4108	Grade:	IV	Date:	9/5/2023

SURFACE WATER/INFLUENCED GROUNDWATER MONTHLY OPERATION REPORT IOWA DNR WATER SUPPLY SECTION

Turbidity Data Page 1 of 1

S/EP: #1

SYSTEM NAME: Boone Water Works PWSID #: 0819033 MONTH: August YEAR: 2023

Finished Water	513				vater vvorks PvvS				υ π. υ	7#: 0819033 MONTH. August TEAR. 2023											
Number Highest Highe		Fin	ished W	ater					ı			Filter E	-ffluen			1					Dow.
Number Paralle Paral						#	! 1	1	#2				#3				#4				
2	Α	of Readings Taken	of Readings	Daily Reading	Conse Result NTU A After 4 From St	ecutive ts >0.5 Anytime I Hours art Up or	Highest	Consec Results >1.0	Conse Result NTU A After 4 From St	ecutive is >0.5 inytime Hours art Up or	Highest	Consec Results >1.0	Conse Result NTU A After 4 From St	ecutive ts >0.5 Anytime I Hours art Up or	Highest (NTU)	Consec Results >1.0	Conse Result NTU A After 4 From St	ecutive ts >0.5 Anytime 4 Hours art Up or	Highest	Consec Results >1.0	Turbidity (Highest Daily Reading
3	1	21	0	.02	.01	.01	.02	0	.01	.01	.02	0	.02	.02	.02	0	.01	.01	.02	0	0.07
4	2	22	0	.02	.01	.01	.02	0	.01	.01	.03	0	.01	.01	.02	0	.02	.02	.03	0	0.07
S 20	3	19	0	.02	.02	.02	.04	0	.01	.01	.02	0	.01	.01	.02	0	.01	.01	.02	0	0.07
6 19 0 0 02 01 01 01 02 0 0 01 01 01 02 0 0 01 01 01 02 0 0 01 01 02 0 0 01 01 02 0 0 02 02 02 03 0 0 000 06 8 20 0 0 02 02 03 03 0 0 0 0 0 0 0 0 0 0	4	20	0	.02	.03	.02	.03	0	.01	.01	.03	0	.01	.01	.02	0	.01	.01	.02	0	0.06
7	5	20	0	.02	.01	.01	.02	0	.01	.01	.02	0	.01	.01	.02	0	.01	.01	.02	0	0.06
8	6	19	0	.02	.01	.01	.02	0	.01	.01	.02	0	.01	.01	.02	0	.02	.02	.03	0	0.07
9 20 0 0.02 .01 .01 .07 0 0.02 .01 .02 0 .01 .01 .02 0 .01 .01 .02 0 .006 10 19 0 0.02 .01 .01 .02 0 .01 .01 .03 0 .01 .01 .02 0 .02 .01 .02 0 .006 11 21 0 .01 .02 .03 .03 .00 .01 .01 .05 0 .01 .01 .03 0 .01 .01 .03 0 .01 .01 .03 12 20 0 .03 .03 .03 .05 0 .02 .01 .07 0 .01 .01 .03 0 .01 .01 .03 0 .01 .01 .02 0 .06 13 21 0 .02 .01 .01 .02 0 .01 .01 .04 0 .02 .02 .04 0 .01 .01 .02 0 .03 14 19 0 .02 .01 .01 .02 0 .01 .01 .04 0 .02 .02 .02 .04 0 .01 .01 .03 0 .00 15 21 0 .02 .02 .02 .02 .02 0 .01 .01 .02 0 .01 .01 .03 0 .01 .01 .03 0 .02 .02 .03 0 .007 16 21 0 .02 .02 .02 .02 .02 .02 .02 .02 .02 .03 0 .01 .01 .03 0 .01 .01 .03 0 .02 .02 .03 0 .007 16 18 0 .02 .02 .01 .03 0 .02 .02 .02 .02 .03 0 .01 .01 .03 0 .01 .01 .03 0 .01 .01 .03 0 .01 .01 .03 0 .07 17 23 0 .02 .01 .01 .01 .02 0 .01 .01 .04 0 .01 .01 .02 .03 0 .01 .01 .02 0 .007 19 20 0 .02 .02 .01 .01 .03 0 .01 .01 .04 0 .01 .03 .03 0 .01 .01 .06 0 .06 18 20 0 .02 .02 .02 .02 .02 .02 .02 .03 0 .01 .01 .02 .02 .02 .03 0 .00 .	7	19	0	.02	.04	.04	.04	0	.01	.01	.02	0	.01	.01	.02	0	.01	.01	.02	0	0.06
10	8	20	0	.02	.03	.03	.04	0	.01	.01	.03	0	.01	.01	.04	0	.01	.01	.02	0	0.06
11	9	20	0	.02	.01	.01	.07	0	.02	.01	.02	0	.01	.01	.02	0	.01	.01	.02	0	0.06
12 20 0 .03 .03 .03 .05 0 .02 .01 .07 0 .01 .01 .03 0 .01 .01 .02 0 0.06 13 21 0 .02 .01 .01 .02 0 .01 .01 .04 0 .02 .02 .02 .04 0 .01 .01 .02 0 .007 14 19 0 .02 .01 .01 .02 0 .01 .01 .04 0 .01 .01 .03 0 .02 .02 .03 0 .007 15 21 0 .02 .02 .02 .02 .02 .02 .03 0 .01 .01 .02 0 .01 .01 .02 0 .01 .01 .03 0 .02 .02 .03 0 .007 16 18 0 .02 .02 .01 .01 .02 0 .01 .01 .02 .02 .02 .03 0 .01 .01 .03 0 .01 .01 .03 0 .007 17 23 0 .02 .01 .01 .02 0 .01 .01 .04 0 .01 .01 .02 0 .01 .01 .02 0 .007 18 20 0 .02 .01 .01 .03 0 .01 .01 .04 0 .01 .03 .03 0 .01 .01 .06 0 .06 18 20 0 .02 .02 .02 .02 .02 .03 0 .01 .01 .04 0 .01 .03 .03 0 .02 .02 .03 0 .007 19 20 0 .02 .02 .02 .02 .02 .03 0 .01 .01 .03 .03 .01 .01 .02 0 .03 .00 .007 20 21 0 .02 .02 .02 .03 0 .02 .02 .03 0 .01 .01 .02 0 .007 21 21 0 .02 .01 .01 .02 0 .01 .01 .03 0 .01 .01 .02 0 .01 .01 .02 0 .007 22 21 0 .02 .0	10	19	0	.02	.01	.01	.02	0	.01	.01	.03	0	.01	.01	.02	0	.02	.01	.02	0	0.06
13	11	21	0	.01	.02	.03	.03	0	.01	.01	.05	0	.01	.01	.03	0	.01	.01	.03	0	0.06
14 19 0 .02 .01 .01 .02 0 .01 .04 0 .01 .03 0 .02 .02 .03 0 0.07 15 21 0 .02 .02 .02 .02 .02 .01 .01 .03 0 .01 .01 .03 0 .00 .07 16 18 0 .02 .02 .01 .03 0 .02 .02 .01 .01 .02 0 .01 .01 .02 .01 .01 .02 .02 .02 .02 .03 .01 .01 .03 .02 .02 .03 .01 .01 .04 .0 .01 .01 .02 .02 .03 .0 .01 .01 .03 .0 .01 .01 .02 .0 .00 .00 .00 .00 .00 .00 .00 .00 <t>.00 .00 .00 .</t>	12	20	0	.03	.03	.03	.05	0	.02	.01	.07	0	.01	.01	.03	0	.01	.01	.02	0	0.06
15	13	21	0	.02	.01	.01	.02	0	.01	.01	.04	0	.02	.02	.04	0	.01	.01	.02	0	0.07
18	14	19	0	.02	.01	.01	.02	0	.01	.01	.04	0	.01	.01	.03	0	.02	.02	.03	0	0.07
17	15	21	0	.02	.02	.02	.02	0	.01	.01	.02	0	.01	.01	.03	0	.01	.01	.03	0	0.07
18	16	18	0	.02	.02	.01	.03	0	.02	.02	.02	0	.01	.01	.02	0	.01	.01	.02	0	0.07
19 20 0 .02 .02 .02 .02 .02 0 .01 .01 .01 .03 0 .01 .01 .02 0 .01 .01 .02 0 .0.7 20 21 0 .02 .02 .02 .02 .03 0 .02 .02 .02 .02 0 .01 .01 .01 .02 0 .01 .01 .02 0 .0.7 21 21 0 .02 .01 .01 .02 0 .02 .02 .02 .02 .02 .02 .02 .02 .	17	23	0	.02	.01	.01	.02	0	.01	.01	.16	0	.02	.02	.03	0	.01	.01	.06	0	0.06
20	18	20	0	.02	.01	.01	.03	0	.01	.01	.04	0	.01	.03	.03	0	.02	.02	.03	0	0.07
21 21 0 .02 .01 .01 .02 0 .02 .03 .04 .01 .01 .01 .01 .04 .0 .01 .01 .01 .01 .04 .0 .01 .01 .01 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 </td <td>19</td> <td>20</td> <td>0</td> <td>.02</td> <td>.02</td> <td>.02</td> <td>.02</td> <td>0</td> <td>.01</td> <td>.01</td> <td>.03</td> <td>0</td> <td>.01</td> <td>.01</td> <td>.02</td> <td>0</td> <td>.01</td> <td>.01</td> <td>.02</td> <td>0</td> <td>0.07</td>	19	20	0	.02	.02	.02	.02	0	.01	.01	.03	0	.01	.01	.02	0	.01	.01	.02	0	0.07
22 21 0 .02 .02 .02 0 .01 .04 0 .01 .02 .02 .02 .02 0 .01 .01 .02 .02 .02 .02 .03 .01 .02 .02 .03 .02 .02 .03 .0 .01 .01 .04 .0 .01 .01 .01 .04 .0 .01 .01 .01 .04 .0 .01 .01 .01 .02 .02 .03 .0 .02 .02 .03 .0 .02 .02 .03 .0 <td< td=""><td>20</td><td>21</td><td>0</td><td>.02</td><td>.02</td><td>.02</td><td>.03</td><td>0</td><td>.02</td><td>.02</td><td>.02</td><td>0</td><td>.01</td><td>.01</td><td>.02</td><td>0</td><td>.01</td><td>.01</td><td>.02</td><td>0</td><td>0.07</td></td<>	20	21	0	.02	.02	.02	.03	0	.02	.02	.02	0	.01	.01	.02	0	.01	.01	.02	0	0.07
23	21	21	0	.02	.01	.01	.02	0	.02	.02	.02	0	.02	.02	.02	0	.01	.01	.02	0	0.07
24 20 0 .03 .02 .03 0 .03 .03 .06 0 .01 .01 .01 .01 .14 0 0.06 25 22 0 .02 .01 .01 .02 0 .03 .02 .03 0 .02 .03 0 .01 .01 .01 .03 0 .02 26 20 0 .02 .01 .01 .02 0 .01 .01 .05 0 .01 .01 .03 0 .02 .02 .03 0 .01 .01 .08 0 .02 .02 .03 0 .07 27 21 0 .02 .02 .02 .02 .02 .02 .02 .02 .02 .03 0 .01 .01 .01 .02 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 <td>22</td> <td>21</td> <td>0</td> <td>.02</td> <td>.02</td> <td>.02</td> <td>.02</td> <td>0</td> <td>.01</td> <td>.01</td> <td>.04</td> <td>0</td> <td>.01</td> <td>.02</td> <td>.02</td> <td>0</td> <td>.02</td> <td>.02</td> <td>.02</td> <td>0</td> <td>0.06</td>	22	21	0	.02	.02	.02	.02	0	.01	.01	.04	0	.01	.02	.02	0	.02	.02	.02	0	0.06
25 22 0 .02 .01 .01 .02 0 .03 .02 .03 0 .02 .03 0 .01 .01 .03 0 .02 .03 0 .01 .01 .03 0 .02 .03 0 .02 .02 .03 0 .01 .01 .08 0 .02 .02 .03 0 .01 .01 .08 0 .02 .02 .03 0 .07 .03 0 .01 .01 .08 0 .02 .03 0 .02 .02 .03 0 .01 .01 .01 .02 0 .02 .02 .03 0 .01 .01 .02 0 .02 .02 .03 0 .02 .02 .03 0 .02 .02 .03 0 .02 .02 .03 0 .01 .01 .02 .03 .03 .03 .02	23	24	0	.01	.02	.02	.02	0	.01	.01	.02	0	.01	.01	.01	0	.01	.01	.01	0	0.06
26 20 0 .02 .01 .01 .02 0 .01 .01 .05 0 .01 .01 .08 0 .02 .02 .03 0 0.07 27 21 0 .02 .02 .02 .02 .02 .02 .03 0 .01 .01 .02 0 .01 .01 .02 0 .06 28 22 0 .02 .02 .03 0 .02 .02 .08 0 .01 .01 .02 0 .06 29 20 0 .02 .01 .01 .02 0 .02 .02 .03 0 .02 .02 .02 .02 .02 .02 .01 .01 .02 .02 .03 0 .02<	24	20	0	.03	.02	.02	.03	0	.03	.03	.06	0	.01	.01	.04	0	.01	.01	.14	0	0.06
27 21 0 .02 .02 .02 .02 .02 .02 .03 0 .01 .01 .02 .01 .01 .02 0 .06 28 22 0 .02 .02 .03 0 .02 .03 0 .02 .02 .03 0 .02 .02 .08 0 .01 .01 .02 0 .06 29 20 0 .02 .01 .01 .02 .02 .03 0 .02 <	25	22	0	.02	.01	.01	.02	0	.03	.02	.03	0	.02	.02	.03	0	.01	.01	.03	0	0.06
28 22 0 .02 .02 .02 .03 0 .02 .02 .03 0 .02 .03 0 .02 .03 0 .02 .02 .08 0 .01 .01 .02 0 .0.06 29 20 0 .02 .01 .01 .02 0 .02 .02 .03 0 .02 .02 .02 .02 .02 .02 0 .01 .01 .02 0 .0.06 30 24 0 .03 .01 .01 .01 .01 0 .02 .02 .02 .02 0 .02 .02 .02 0 .02 .02	26	20	0	.02	.01	.01	.02	0	.01	.01	.05	0	.01	.01	.08	0	.02	.02	.03	0	0.07
29 20 0 .02 .01 .02 0 .02 .02 .03 0 .02 .02 .03 0 .02 .03 .03 .03 .03 .03 .03 .02 .02 .13 .0 .02 .01 .08 0 .06 Total 638 0 0 0 0 0 0 0 0	27	21	0	.02	.02	.02	.02	0	.02	.02	.03	0	.01	.01	.02	0	.01	.01	.02	0	0.06
30 24 0 .03 .01 .01 .01 0 .02 .02 .02 0 .02 .02 0 .02 0 .02 .02	28	22	0	.02	.02	.02	.03	0	.02	.02	.03	0	.02	.02	.08	0	.01	.01	.02	0	0.06
31 20 0 .04 .03 .03 .03 0 .02 .02 .13 0 .02 .13 0 .02 .01 .08 0 0 0 Total 638 0	29	20	0	.02	.01	.01	.02	0	.02	.02	.03	0	.02	.02	.02	0	.01	.01	.02	0	0.06
Total 638 0 </td <td>30</td> <td>24</td> <td>0</td> <td>.03</td> <td>.01</td> <td>.01</td> <td>.01</td> <td>0</td> <td>.02</td> <td>.02</td> <td>.02</td> <td>0</td> <td>.02</td> <td>.02</td> <td>.02</td> <td>0</td> <td>.02</td> <td>.02</td> <td>.02</td> <td>0</td> <td>0.06</td>	30	24	0	.03	.01	.01	.01	0	.02	.02	.02	0	.02	.02	.02	0	.02	.02	.02	0	0.06
Avg .04 .07 .16 .13 .14 0.07	31	20	0	.04	.03	.03	.03	0	.02	.02	.13	0	.01	.02	.13	0	.02	.01	.08	0	0.06
Max .04 .07 .16 .13 .14 .0.07	Total	638	0					0				0				0				0	
	Avg																				0.06
Min 0.06	Max			.04			.07				.16				.13				.14		0.07
	Min																				0.06

^{**}If continuous monitoring of turbidity is provided, measurements must be recorded at equal time intervals at least once every four hours or hourly for plants w/pop. >100,000.

I certify that I am familiar with the information contained in this report and that the information is true, complete, and accurate.

DRC Operator's or Designee's Signature: David Moore
Certificate #: 4108 Grade: IV Date: 9/5/2023

SURFACE WATER/INFLUENCED GROUNDWATER MONTHLY OPERATION REPORT IOWA DNR WATER SUPPLY

October 2018

	S/EP:	#1				Ba	asic Informat	ion						
/stem Na		π:				PWSID #:	819	033		Month:	August		Year:	2023
	Operating	Pum	page	Fluc	oride	Raw		Settled 7	Turbidity					
D	Hours					Turbidity	(inc	dividual sedir	mentation ba	ısin)				
a y	Number of hours the plant operated per day	Raw in 1,000s Gallons Per Day	To System in 1,000s Gallons Per Day	Quantity Used in lbs. or gal. (circle one)	Finished Water (mg/L)	Highest Daily Reading (NTU)	Highest Daily Reading Sed 1 (NTU)	Highest Daily Reading Sed 2 (NTU)	Highest Daily Reading Sed 3 (NTU)	Highest Daily Reading Sed 4 (NTU)				
1	20.75	2449.00	2039.00	35.00	0.72	0.07		0.65						
2	19.50	2306.00	1922.00	31.00	0.73	0.07		0.83						
3	20.00	2383.00	2008.00	34.00	0.67	0.07		0.88						
4	20.00	2373.00	1974.00	35.00	0.77	0.06		0.58						
5	20.25	2349.00	1971.00	33.00	0.70	0.06		0.80						
6	17.25	1993.00	1670.00	27.00	0.66	0.07		1.42						
7	19.00	2208.00	1848.00	29.00	0.65	0.06		1.28						
8	19.75	2198.00	1821.00	30.00	0.70	0.06		0.42						
9	19.00	2115.00	1770.00	31.00	0.68	0.06		0.21						
10	20.50	2109.00	1794.00	17.00	0.68	0.06		1.04						
11	21.50	2082.00	1742.00	32.00	0.71	0.06		0.56						
12	20.50	2098.00	1743.00	28.00	0.76	0.06		0.30						
13	19.25	1954.00	1610.00	28.00	0.82	0.07		0.82						
14	19.75	2193.00	1953.00	30.00	0.79	0.07		0.96						
15	18.00	1798.00	1502.00	22.00	0.77	0.07		1.32						
16	23.50	2285.00	1908.00	28.00	0.70	0.07		0.39						
17	20.25	2193.00	1801.00	32.00	0.67	0.06		0.40						
18	19.50	2188.00	1808.00	34.00	0.68	0.07		0.99						
19	20.75	2313.00	1931.00	34.00	0.80	0.07		0.36						
20	20.25	2264.00	1890.00	28.00	0.71	0.07		0.62						
21	21.25	2469.00	2070.00	33.00	0.68	0.07		0.93						
22	24.00	2787.00	2279.00	39.00	0.70	0.06		0.44						
23	20.00	2622.00	2179.00	37.00	0.78	0.06		1.22						
24	21.50	2724.00	2224.00	36.00	0.73	0.06		1.21						
25	20.50	2484.00	2033.00	36.00	0.70	0.06		1.30						
26	20.25	2437.00	2000.00	34.00	0.70	0.07		0.59						
27	21.00	2538.00	2057.00	37.00	0.72	0.06		1.26						
28	22.25	2434.00	2056.00	33.00	0.72	0.06		0.79						
29	23.75	2869.00	2319.00	41.00	0.71	0.06		1.09						
30	20.75	2299.00	2002.00	32.00	0.69	0.06		0.62						
31	23.50	2602.00	2180.00	36.00	0.68	0.06		0.65						
Total	638	72,116	60,104	992							0	0	0	0
Avg	20.58	2,326	1,939	32.00	0.72	0.06	#DIV/0!	0.80	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
Max	24.00	2,869	2,319	41.00	0.82	0.07	0.00	1.4	0.0	0.00	0.00	0.00	0.00	0.00
Min	17.25	1,798	1,502	17.00	0.65	0.06	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00

certify that I am familiar with the information contained in this report and that the information is true, complete, and accurate.					
DRC Operator or Designee's Signature: David Moore					
Certificate #: 4108	Grade:	IV	Date:	9/5/2023	

FORM 542-8027

IOWA DEPARTMENT OF NATURAL RESOURCES NPDS REPORTING SYSTEM - DISCHARGE MONITORING REPORT

FACILITY INFORMATION

This form is valid 2/1/2023 to 7/31/2024

Facility Name:	BOONE CITY OF STP
Permit #:	0819001
Month/Year:	8 2023
Outfall #(s):	001 - DISCHARGE FROM AN ACTIVATED SLUDGE WASTEWATER TREATMENT FACILITY.
Operator Name:	John Roberts
Certification #:	10924
Phone #:	7122590808
Lab Cert. #:	156
Comments:	
	*Include Comments longer than 1000 characters in email
_	
Signature:	
	John Roberts
•	
	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for known violations.

Permit # 0819001 Facility Name: BOONE CITY OF STP

Monthly Operation Report IOWA DEPARTMENT OF NATURAL RESOURCES NPDS - Operation Permit System INFLUENT Data

Outfall #: 001 Month/Year: 8-2023

Mon. Point	6-2023 RAW WASTE												
Parameter	FLOW	FLOW BOD5 TSS					T-N	TKN		PHOS		TEMP	PH
Units	MGD	MG/L	LBS/DAY	MG/L	LBS/DAY	MG/L	LBS/DAY	MG/L	LBS/DAY	MG/L	LBS/DAY	FAHRENHEIT	STD UNITS
Frequency	7/WEEK OR DAILY	2 TIMES PER WEEK	1 TIME PER WEEK	1 TIME PER WEEK	1 EVERY MONTH	1 EVERY MONTH	1 TIME PER WEEK	1 TIME PER WEEK	2 TIMES PER WEEK	2 TIMES PER WEEK			
Start Date													
End Date	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration
No Discharge													
LOQ													
Day: 1	1.5					27.1	339.021	27	337.77	5	62.55	68	7.4
2	1.471	169	2073.31566	143	1754.34402							66	7.4
3	1.506											68	
4	1.379	139	1598.61954									69	7.4
5	1.855												
6	3.196												
7	2.183			99	1802.41578							66	
8	1.957					17.46	284.9712948	17	277.46346	2.9	47.332002		
9	4.862	129	5230.83132	96	3892.71168							66	
10	3.418	105	2993.1426									68	
11	3.044											68	7.5
12	2.638												
13	2.473												
14	2.417			84	1693.25352							66	
15	2.21					22.1	407.33394	22	405.4908	4	73.7256		
16	2.131	56	995.26224	26	462.08604							66	
17	1.972	0.1	1000 00070									68	
18	1.837	84	1286.92872									66	7.5
19 20	1.777 1.729												
20				444	4550 40004							68	7.4
21	1.681 1.776			111	1556.16894	16.52	244.6915968	16	236.98944	2.5	37.0296		
23	1.776	173	2545.13448	136	2000.79936	10.52	244.0913900	10	230.90944	2.0	37.0290	70	
24	1.811	173	2343.13440	130	2000.79930							70	
25	1.675	141	1969.6995									68	
26	1.619	141	1303.0333									00	7.3
27	1.615												
28	1.596			170	2262.8088							68	7.4
29	1.603				EE02.0000							68	
30	1.533	242	3094.02324	151	1930.56822							68	
31	1.454	2,2	0001.02021	101	1000.00022							67	
Total	63,682	1238	21786.9573	1016	17355.15636	83.18	1276.017832	82	1257.7137	14.4	220.637202		
Monthly Avg.	2.054258065	137.5555556	2420,773033	112.88888889	1928.350707	20.795	319.0044579	20.5		3.6			7.4
Daily Max.	4.862	242	5230.83132	170		27.1	407.33394			5			
Daily Min.	1.379	56		26		16.52	244.6915968	16		2.5			
Max. 7/Avg.	2.972714286	157		153		27.1	407.33394				73.7256		

Permit # 0819001 Facility Name: BOONE CITY OF STP Monthly Operation Report
IOWA DEPARTMENT OF NATURAL RESOURCES
NPDS - Operation Permit System
EFFLUENT Data

Outfall #: 001

on. Point						EFFLUEN	IT PRIOR TO DISINE	ECTION						EFFLUENT AFTER DISINFECTION			
Parameter	CBOD5 TSS			NH3-N NO3-N				T-N	PHOS TOX CER		TOX PIM	TEMP DO		PH E. COLI			
Units	MG/L	LBS/DAY	MG/L	LBS/DAY	MG/L	LBS/DAY	LBS/DAY	MG/L	LBS/DAY	MG/L	LBS/DAY	NO TOXICITY	NO TOXICITY	FAHRENHEIT	MG/L	STD UNITS	#/100 ML
equency	2 TIMES PER WEEK	2 TIMES PER WEEK										1 EVERY 12 MONTHS					GEO. MEAN 1/3 MON
tart Date																	8/1/2023
nd Date	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	Permit Duration	7/31/2024
Discharge	T CHINE DUIGNON	1 Citill Dalation	1 Citili Dalation	T CITILL DUILLOIT	1 Citili Daration	T CHINE DUI GLOTT	1 Office Databon	T CHINE DUIGUON	1 Citili Dalation	1 Citili Dalduon			06 - NOT REQ / MP	T CHINE DUIGION	1 Citie Dalation	T CITILL DUIGUOIT	06 - NOT REQ / MP
LOQ								1				00 - NOT IXEQ / IMP	00 - NOT REQ / NIF				00 - NOT ICEQ / IMF
					0.4	1.251			450.40		04.070			70			
Day: 1					0.1			12	150.12	2.5	31.275			70 68			.9
2	3	36.80442	3	36.80442	0.1												
3					0.1									70			
4	3	34.50258			0.1	1.150086								70	8.1	7	.9
5																	
6																	
7			3	54.61866										68	8.5	7	.9
8					0.1	1.632138	62	4.76	77,6897688	1.5	24,48207			68	8.3	7	.8
9	3	121.64724	2	81.09816	0.1	4.054908								68	8.1	7	.8
10	3	85.51836			0.1	2.850612								68	8.6	7	9
11	_				0.1									68			8
12					0.1	2.000000		+							0.0		9
12								1									
14			2	40.31556										66	8.4	7	0
14				40.31330													
15					0.1			10.75	198.13755	2.8	51.60792			68			
16	3	53.31762	2	35.54508	0.1									68			
17					0.1									68			
18	3	45.96174			0.1	1.532058								68	8.7	7	.9
19																	
20																	
21			7	98.13678										70	8	7	.9
22					0.1	1,481184		10.49	155.3762016	21	31,104864			72	8.2	7	9
23	3	44,13528	2	29.42352	0.1									72			
24		44.10020		20.42002	0.1			+						72			
25	3	41,9085			0.1									72	7.0		
26		41.5005			0.1	1.00000		1							7.0		.0
20																	
21				26.62128										70	8.3	7	
28				26.62128													
29														70			
30	3	38.35566	5	63.9261	0.1									70			
31					0.1									70	8.3		.9
Total	27	502.1514	28	466.48956	1.8	31.1082	62	38	581.3235204	8.9	138.469854			1594	189.7	181	.1
nthly Avg.		55.7946	3.111111111		0.1									69.30434783			
Daily Max.	3	121.64724	7	98.13678	0.1		62							72			8
Daily Min.	3	34.50258	2	26.62128	0.1		62							66			8
Max. 7/Avg.	2	103.5828	4.5				62							71.6			

1406 Central Avenue Fort Dodge, Iowa 50501 515-269-2338

www.USWUtilityGroup.com

UPGRADE	PROGRAM	September 2023				
DATE	ADDRESS	ORIG INSTALL	Note	Low	Med	High
9/1/2023	1521 Crestwood H	New Service				
9/1/2023	1521 Crestwood L	New Service				
9/1/2023	430 S Linn	10/19/99				
9/6/2023	306 Sunrise H	7/26/2005				
9/6/2023	306 Sunrise L	7/26/2005				
9/6/2023	1120 Southview H	11/22/04				
9/6/2023	1120 Southview L	11/22/04				
9/6/2023	503 W Park Ave	5/20/2008				
9/7/2023	1828 Aldrich H	7/30/2004				
9/7/2023	1828 Aldrich L	7/30/2004				
9/8/2023	1727 Union H	8/8/2007				
9/8/2023	1727 Union L	8/8/2007				
9/8/2023	1534 Hancock H	7/2/2007				
9/8/2023	1534 Hancock L	7/2/2007				
9/11/2023	1219 W 5th	8/6/2007				
9/11/2023	1730 Clinton H	03/08/04				
9/11/2023	1730 Clinton L	03/08/04				
9/11/2023	832 S Jackson H	01/12/04				
9/11/2023	832 S Jackson L	01/12/04				
9/12/2023	1217 W 5th	08/06/07				
9/13/2023	514 Madison	Frozen				
9/13/2023	2003 Linn	04/29/02				
9/15/2023	540 S Cedar H	01/26/99				
9/15/2023	540 S Cedar L	10/20/04				
9/15/2023	2407 Marshall	Pre 1999				
9/18/2023	307 5th St	05/31/07				
9/20/2023	1502 Crawford	pre 1999				
9/21/2023	1703 SE Linn H	03/12/99				
9/21/2023	1703 SE Linn L	03/12/99				
	614 W Mamie	Removed				
9/22/2023	324 S Clinton H	05/14/04				
9/22/2023	324 S Clinton L	05/14/04				
	1011 Story St	New Service				
9/27/2023	116 Benton	09/02/08				
Locates						
8/1 to 9/1	233	3				

Curb Box Repair Update for 10/10/2023 – as of 10/02/2023

Due to a mishap with the disconnection notices in the new software, shut offs were not performed in the month of September.

122 stop boxes need repaired, 53 of which have lead service lines.

7 delinquent bills in the amount of \$3477.26 certified on September 25th. Due to issues with the new software, no assessments were started in the month of September to be certified in October.

Lesli Vote Utility Billing Supervisor